
 

 

  
    Abstract—Color retinal image enhancement plays an important 
role in creating an image suitable for medical diagnosis for the early 
detection of eye disease. For this problem domain, we propose 
histogram-based color balance and contrast enhancement (CBCE) 
which automatically adjusts the intensity values under psychometric 
constraints by employing generalized extreme value functions. The 
results show that our algorithm performs color retinal image 
enhancement well, while retaining a pleasing natural appearance for 
visually diagnosing the image. The performance of our method has 
been evaluated against data from the Structured Analysis of the 
Retina and the Diabetic Retinopathy image databases.  

Keywords—Histogram specification, generalized extreme value, 
retinal images, color balance, psychometric function.  

I.    INTRODUCTION 
ANY eye diseases, including age-related macular 
degeneration (AMD) and diabetic retinopathy [1] [2], 

manifest themselves in the retina, and some are the leading 
causes of blindness. As a consequence, retinal images are 
widely used by ophthalmologists to identify patients who may 
be at risk from eye disease. However, those images may be 
unsuitable for diagnosis due to their poor quality, caused by 
non-uniform illumination, low contrast, or washed-out color 
[3] [4]. Such images need to be enhanced to provide better 
visibility of the retinal anatomical structures.  

We propose an improvement to previously exiting 
algorithms in order to allow physicians to more easily and 
accurately diagnose the disease. 

Image processing algorithms for improving the poor 
quality images include decomposition techniques [5] which 
decompose an image into high and low frequency signals then 
process the two signals, and histogram specification 
techniques [6] [7]. The histogram specification techniques 
modify the image by creating a pixel mapping function, and 
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use it to redistribute the original image histogram to increase 
the image’s contrast. These techniques have received the most 
attention due to their straightforward and intuitive 
implementation. 

For decomposition technique, Dai et al. [5] proposed 
retinal fundus image enhancement using normalized 
convolution and noise removal. The information in the 
background image was extracted from the original image by 
applying a normalized convolution algorithm [8].  In order to 
obtain an enhanced image, the difference between the original 
image and the background image was multiplied by a contrast 
factor, and fused with the original image. The fused image 
was de-noised by applying fourth-order partial differential 
equations [9] and a relaxed median filter [10]. This technique 
can reduce abrupt changes and improve detailed information 
by increasing the image contrast, especially in the region of 
retinal vessels. However, this decomposition technique is a 
complex computations. 

For histogram-based methods, histogram equalization (HE) 
is widely used to enhance the contrast of grey-scale images, by 
employing a cumulative distribution function (CDF) to stretch 
their dynamic range. However, for a color image, HE may 
produce unwanted artefacts, color imbalance, loss of detail, 
and it may shift the mean intensity values to the middle of the 
intensity range. Many algorithms have been proposed with 
various constraints, such as brightness preservation [11] [12] 
[13] and contrast limitation [14]. However, brightness 
preservation algorithms provide output images with a mean 
brightness close to the original, which is inappropriate for 
under-exposed or over-exposed images; especially, a color 
retinal photograph. In addition, the contrast-limited adaptive 
histogram equalization (CLAHE) algorithm [15] is 
disadvantageous as it is difficult to determine many of the 
parameters, such as clip limit, tile size, and mapping functions. 
It is generally only used to enhance the luminance channel.  

A color retinal image enhancement based on luminosity 
and contrast adjustment [6] has been proposed, which 
augments the classical histogram equalization. In this method, 
the R, G, and B channels are enhanced by a luminance gain 
matrix, which is obtained by gamma correction of the value 
channel, V, in hue-saturation-value (HSV) color space. The 
contrast of the luminosity channel of L*a*b can be further 
enhanced by applying the CLAHE method with the number of 
tiles and the clip limit equal to 8×8 and 0.01, respectively.  

Automated Color Balance and Contrast 
Enhancement of Retinal Images for Visual 

Diagnosis 

P. Vonghirandecha, M. Karnjanadecha and S. Intajag 

M 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 13, 2019 

ISSN: 1998-4510 46



 

 

The methods set out above deal with brightness and 
contrast enhancement, but they do not adjust the color balance 
to improve the color image quality. Intajag et al. [7] proposed 
a histogram specification method with generalized extreme 
value distribution (HS-GEV), to automatically adjust the 
brightness, contrast, and color balance by redistributing the 
image data. This was utilized to support the population 
screening of AMD lesions.  

In order to improve the retinal color images, our method 
automatically enhances the images by modifying HS-GEV [7] 
to increase the contrast and color balance, while preserving 
naturalness, and taking into consideration the human visual 
system. Our algorithm uses a contrast sensitivity function 
(CSF) [16] to develop a criterion for justifying the image 
quality. The specifications of the enhanced images are 
designed according to optimal standardized images provided 
by the AREDS2 Reading Center [3]. The performance of our 
method was evaluated using two publicly available datasets, 
Structured Analysis of the Retina (STARE) [17] and the 
Diabetic Retinopathy Database (DIARETDB0) [18]. The 
results show that our algorithm can make the interesting parts 
of retinal images more visible, and these enhanced images 
could help ophthalmologists during disease diagnostic 
procedures.  

This paper proceeds as follows: the image databases are 
introduced in section II-A, and section II-B summarizes 
histogram specification, GEV distribution, probability 
weighted moment (PWM) estimation, and HS-GEV. Section 
III describes our algorithm in detail. Our experimental results 
appear in section IV, and conclusions in section V.  

II.    MATERIALS AND BASIC THEORY 

A. Materials 
We employ two publicly available datasets: Structured 

Analysis of the Retina [17], and the Diabetic Retinopathy 
Database [18], to evaluate the performance of our method. The 
STARE dataset, acquired by Hoover et al. [17], consists of 36 
normal and 47 AMD images. The images were taken with a 
35° field of view, and each occupies 700×605 pixels, and are 
stored in 24-bit PPM format. The DIARETDB0 database, 
acquired by Kauppi et al. [18], consists of 20 normal images 
and 110 containing signs of diabetic retinopathy. The images 
were taken with a 50° field of view, are 1500×1152 pixels 
large, and stored in 24-bit PNG format. 

B. Basic theory 
The proposed method incorporates histogram specification 

(HS) with support from GEV distribution and parameter 
estimation using the PWM method. Also, the retinal image 
enhancement employs HS-GEV. The rest of this sub-section 
gives some background on these four techniques. 
 

B.1. Histogram Specification  
Histogram equalization employs the probability density 

function (PDF) and the cumulative distribution function [19] 
to achieve a uniform distribution in image processing. HE can 
usually produce good quality image contrast when the image 
has approximately a uniform distribution.  

Let r denote the grey levels of the input image to be 
enhanced. Assume that r is a continuous random variable 
which has been normalized in the range [0, 1] and its 
continuous probability density function is ( )p rr . Suppose

( )( )
r

rp w dwT r
−∞

= ∫  is the CDF of r, which is strictly 

increasing; therefore, T(r) is uniformly distributed in [0, 1].  
For a grey level image, its intensity value is a discrete 

integer in the range [0, L-1] (where L denotes the maximum 
number of intensity values). Hence (L-1) × T(r) will be 
uniform in [0, L-1] and the transform r  (L-1) × T(r) is an 
equalization of the grey level image [19] [20]. A 
transformation function that produces an output intensity level 
z by histogram equalization has the form:  

 

( )( 1) ( ) ( 1)
r

z L T r L p w dwr
−∞

= − = − ∫ ,   (1) 

 
where w is a dummy variable of integration. 

Histogram equalization yields an image whose pixels are 
uniformly distributed among all the grey levels. However, the 
intensity values of retinal images typically have more complex 
distributions than uniform, which mean that HE may not be 
appropriate. In general, retinal image enhancement uses not 
only a scaling parameter to increase the image contrast, but 
also employs the centroid density and shape parameter for the 
frequency distributions to specify the color balance and to map 
color tone.  Histogram specification addresses this issue by 
letting us specify the optimal distribution. Let, g represent the 
output intensity levels of the desired image, and ( )p gg  be 

the specified PDF. Pratt [21] defined the specifying function 
as:  

 

( )( ) ( 1)
g

H g L p u du zg
−∞

= − =∫ ,    (2) 

 
where u is a dummy variable of integration. From equations 
(1) and (2), the output intensity level, g of the desired image 
becomes: 
 

1( )g H z−= ,     (3) 
 

where 1H −  is an inverse transformation function that maps 
grey-scale values in the input image to the desired image. 
More detailed information of histogram specification can be 
found in Gonzalez et al. [19]. 

The specified histogram, ( )p gg  can be used by many 

types of probability function [21], such as uniform, 
hyperbolic, exponential, and Rayleigh distributions. These 
PDFs usually enhance monochrome images by controlling the 
range or shape parameters. In order to specify the histogram of 
a color image, a GEV distribution is employed, consisting of 
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shape, scale, and location parameters. This provides control 
over the shape, range, and brightness location.  

 
B.2. Generalized Extreme Value  
The extreme value theory by Fisher and Tippet [22] is a 

cornerstone of distribution functions, and a good review of 
GEV applications appears in Fararo and Katz [23]. The CDF 
of a GEV [24] is given by: 
 

( )

( )

( )

1
exp 1 ,

, for 0;
                 0, 
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  (4) 

 
The GEV distribution includes three parameters: the 

location (µ) which determines the mode of the GEV 
distribution, the scale (σ) which specifies the deviation, and 
the shape (κ) which indicates how rapidly the upper tail 
decays. Three types of distribution can be determined by the κ 
value. Negative κ is a Type III or Weibull distribution, which 
has a bound tail. Positive κ is a Type II or Frechet distribution, 
which has a heavy tail. When κ approaches zero, it becomes a 
Type I or Gumbel distribution, which displays an exponential 
tail. 

In our work, the three GEV parameters are used to adjust 
the brightness, contrast, and color balance of the color images. 
The PDF corresponding to  (4) is:  
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Since the cumulative distribution function is invertible, it 

can be expressed in the form: 
 

( )

( )

1 ln   for 0;1( )  
ln ln           for 0.
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y
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To design the HS using a GEV distribution, the inverse 

function, 1H −  in (3) can be represented by the inverse 

function, 1F − in (6) to generate the specified intensity, g. This 
means that the transfer function for the HS based on the GEV 
distribution becomes: 

( )

( )

1 ln   for 0;1( )  
ln ln           for 0.

z
g H z

z

κσμ κκ
μ σ κ

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎣ ⎦⎨
⎪
⎩

+ − − ≠−= =
− − =

 (7) 

 
In other words, the image enhancement quality of the HS 

now depends on designing suitable GEV parameters. These 
can be estimated by the PWM method. 
 

B.3. Probability weighted moments  
The µ, σ, and κ parameters of the GEV can be reliably 

estimated using the PWMs described by Hosking et al. [25]:  
 

2ˆ 7.8590 2.9554c cκ = + , (8) 
 

( )
( ) ( )

1 0
ˆ
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ˆ
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κ

κ
σ

κ−
=

Γ

−
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, (9) 

 

( )0
ˆ ˆˆ 1 1ˆb σμ κκ

⎡ ⎤
⎢ ⎥⎣ ⎦

= − −Γ + , (10) 

 
where 1 0 2 0(2 ) / (3 ) log 2 / log3c b b b b= − − − , and Γ denotes a 
gamma function. The values, b0, b1, and b2 are calculated by 
employing an unbiased estimator of the first three PWMs, 
given by: 
 

( )( )( ) ( )
( )( )( ) ( ) ( )

1

1 2 3 ...
,    0,1,2,...

1 2 3 ...
n

r
i

i i i i r
b x rin n n n n r=

− − − −
= =∑

− − − −  (11) 

where ( )ix denotes the ordered observations from a sample of 

size n, that is           (1) (2) (3) ( )... nx x x x⎧ ⎫
⎨ ⎬
⎩ ⎭

≤ ≤ ≤ ≤ . 
 

B.4. Retinal image enhancement by HS-GEV  
The HS-GEV model [7] employs a generalized extreme 

value distribution [24] [26] to design the transfer functions of 
the histogram specification technique [19] [21] [27]. The 
transfer functions are specified with three GEV parameters to 
control the brightness, contrast, and color balance of the 
retinal images. These parameters consist of shape, scale, and 
location, which are estimated by PWMs as outlined above.  

HS-GEV uses Kullback–Leibler divergence (KLD) [28] to 
find the optimal GEV parameters in an iterative process, 
which consists of two loops of shape and scale parameters. 
Each shape parameter is used to adjust the tone, while the 
scale parameter is used to increase the dynamic range. In each 
iteration, the location parameter is recalculated to update the 
KLD values as seen in the sequence of the equations (8)-(10). 
Although HS-GEV could be employed to effectively enhance 
color retinal images, optimal GEV parameters with maximized 
KLD values could generate darker or brighter regions, as 
illustrated by column (b) of Fig. 1.  
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(a)                             (b)                               (c) 

Fig. 1 Comparison enhancement results by columns: 
(a) Original images from files im0292.ppm, and im0082.ppm,   
(b) Enhanced images by HS-GEV, (c) Enhanced images by our 
method. 

 
Our algorithm, color balance and contrast enhancement 

(CBCE), is proposed to overcome some drawbacks of the HS-
GEV method as illustrated by a comparison of the image 
results in columns (b) and (c) of Fig. 1. The purpose of this 
improvement, and the main contribution of our work, is to 
provide a good quality fundus image, as seen in the column 
(c); we replace the cost function, KLD of HS-GEV with an 
achromatic contrast sensitivity quality metric (ACSQM), and 
compensate for non-uniform illumination as seen in the flow 
diagram of CBCE in Fig. 2.  

The CBCE diagram is comprised of two main parts. The 
first initializes the process variables and estimates the GEV 
parameters of the input image. The second part is an iterative 
process to find the optimal GEV parameters by assessing the 
image quality index. 

 

   
Fig. 2 Flow diagram of our method. 

III.    COLOR RETINAL IMAGE ENHANCEMENT METHOD 
Our method enhances color retinal images to be optimal 

for human diagnosis. This requires that we extend the CBCE 
algorithm from the HS-GEV method to deal with the problems 
illustrated in Fig. 1. The key new feature is a controller, which 
employs a psychometric function incorporating a brightness 
regulator mechanism to improve the regions that are too dark 
or too bright. Our extended CBCE provides a better colored 
image under the specification of the Hubbard model provided 
by the AREDS2 Reading Center. The CBCE algorithm has 
two aims. Firstly, the shape parameters of the enhanced image 
are kept the same as those in the original in order to preserve 
the pathology of any retinal diseases. Secondly, the dynamic 
range of the image is improved by tuning scale parameters to 
make the retinal anatomical structure more visible. 

A. Achromatic contrast sensitivity quality metric 
In our CBCE algorithm, the image quality index is designed 

to select optimal GEV parameters. Our quality index was 
based on observations in a manner similar to human 
perception mechanisms, which are very sensitive to edges (or 
object boundaries) [21]. 

We utilized ACSQM index to objectively assess the 
perceived image quality of images. This was done by applying 
a psychometric function designed to accumulate the number of 
just-noticeable differences between the object and the 
background. For the color images, enhancement mechanisms 
of brightness, and contrast were quantified by computing the 
quality index on their luminance channel. 

The results achieved by applying CSF to image processing 
to assess the perceptual quality of images has improved 
considerably over the last decade [29] [30] [31]. The purpose 
of using a CSF is to filter and extract the crucial anatomical 
structure information in the retinal images by weighting the 
spatial frequencies of the human visual stimuli. In our 
algorithm, the CSF model of Mannos and Sakrison [32] was 
adapted to modulate the enhanced images as follows: 
 

( / )C SF( ) ( / ) e 0
0

dsf fsf a z sf f −≈ + , (12) 
 
where a is a constant, z represents a zero frequency intercept 
controller,  f0 denotes the frequency constant for controlling 
the position of the central peak, d is a constant value to adjust 
the high frequency tail, and sf represents the spatial frequency. 
We utilized parameters in agreement with those reported by 
Mannos and Sakrison [32] to evaluate the retinal images. The 
parameters were a = 2.6, z = 0.0192, f0 = 8.772 and d =1.1.  

The CSF in (12) can be calculated in three steps for the 
frequency domain [19]. First, a Fast Fourier Transform (FFT) 
is applied to transform the luminance image into the spatial 
frequency domain, with the viewing distance approximately 
six times the image size. This provides a modulated frequency 
of about 5.625 cycles per degree. Second, the filtering 
operation is performed by multiplying the value returned by 
the Fourier transform to the CSF coefficient. Finally, an 
inverse Fast Fourier Transform (IFFT) is used to transform the 
spatial frequency coefficients back to the spatial domain. The 
calculated CSF luminance image is illustrated in Fig. 3(b). 
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The CSF luminance image was used to formulate the 
psychometric function, pr, to obtain a local visibility 
brightness contrast, vlocal(i), given by:  
 

( ) 0 0( , , )ilocal iv pr s μ σ= , (13) 
 

where si represents an edge strength at the i-th sliding 
window, which is derived from the standard deviation of the 
CSF luminance image in a window of 5×5 pixels. The 
edgeness result is shown in Fig. 3(c), and is employed to 
assess the edge-based contrast measurement. µ0 and σ0  denote 
the average and standard deviation of the edge strength of the 
original input image. Fig. 3(d) shows the local visibility 
brightness contrast image obtained from (13) which is used to 
predict the quality of the image. 

A well-known psychometric function, Galton’s ogive, can 
be employed to model the detection probability of the signal 
strength. This was introduced by Barten [16], in the form of a 
cumulative Gaussian distribution: 

 
2

0
0 0 2

00

( )1
( , , ) exp

22

is

i
x

pr s dxμ
μ σ

σσ π −∞

−
=

⎡ ⎤
−⎢ ⎥

⎣ ⎦
∫ , (14) 

 
where x is an integration variable.  

The edge-based contrast quality, qe, is obtained by 
averaging the values, vlocal(i). It is employed on the edge 
strength to measure the contrast image, expressed as: 
 

( )

1

1 N

ie local
i

q v
N =

= ∑ . (15) 

 
As the index qe approaches 1, our algorithm provides the 
maximum contrast.  

Our investigation of the STARE and DIARETDB0 
datasets revealed that most images had some regions that were 
too dark or too bright, caused by non-uniform illumination or 
media opacity. For example, the white area on the left of the 
image in Fig. 4(c) means that the corresponding region in the 
image in Fig. 4(a) is too dark. On the other hand, the white 
area in Fig. 4(d) shows that the corresponding region of the 
image in Fig. 4(b) is too bright. This problem can obscure the 
anatomical structures of the retina, and make some of the 
details necessary for a diagnosis undetectable. In our scheme, 
a brightness regulator maintains the inappropriate brightness 
identified by the proportions of the regions that are too dark or 
too bright, which is formulated as PD: 

 

( ) ( )
1 1

( , )
m n

r c
PD D r c m n

= =
= ×∑ ∑ , (16) 

 
where m and n are the image dimensions, and D(r, c) denotes 
a binary image that highlights the too dark or too bright 
regions.  

 

   
(a)                                   (b) 

   
(c)                                  (d) 

Fig. 3 Output examples during the ACSQM process. 
(a) The luminance image of the input fundus image (file: 
Image109.png). (b) The CSF luminance image. (c) The 
edge strength of the CSF luminance image. (d) The local 
visibility brightness contrast after the processing of the 
psychometric function using (13).  
 
In our scheme, regions with very low color variation are 

defined as having inappropriate brightness. From our 
experiments with the datasets, D(r, c) can be defined as:  
 

1,   ( ( , )) ,
( , )

0,  ,
if S RGB r c T

D r c
otherwise

≤⎧
= ⎨

⎩
       (17) 

 
where T denotes the threshold value determined by Otsu’s 
method [33]. S(RGB(r, c)) denotes the standard deviation at a 
pixel coordinate (r, c) formulated from the color variation in 
the RGB channels. S(RGB(r, c)) can be formulated as:  
 

2 2

2

( ( , ))

[( ( , ) ( , )) ( ( , ) ( , ))

+( ( , ) ( , )) ] / 3

S RGB r c

R r c M r c G r c M r c

B r c M r c

=

− + −

−

  (18) 

 
where R(r, c), G(r, c), and B(r, c) are the pixel values at the r-
th row and the c-th column of the RGB channels. M(r, c) 
represents the luminance, which may be estimated by 
combining equal weights for each channel (as in a hue-
saturation-intensity color model), or by using unequal weights 
(as in an XYZ color model) [19]. Our method represents M(r, 
c) using the mean values of the RGB channels at the (r, c) 
position. Our approach means that increasing the scale 
parameters will expand the dynamic range of the brightness of 
the red-green plane. However, expanding the direction to the 
dark or bright zones could increase the proportion of 
unsuitable areas. In that case, the proportions of unsuitable 
areas will decrease the edge-based contrast quality in order to 
avoid spurious optimal parameters. Hence, the factor PD is 
used to modify the quality index in  (15). 
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The achromatic contrast sensitivity quality metric, q, is: 
 

eq q PD= − .     (19)  
 
The compensation mechanism for the brightness regulator 

is illustrated in Fig. 5. Fig. 5(c) and (d) show two of the 
enhanced images which occurred during the tuning process. In 
Fig. 5(c), qe = 0.8248 and PD = 0.0995, giving a quality index, 
q, of 0.7253. In Fig. 5(d), qe = 0.8193 and PD = 0.0309, giving 
a quality index, q = 0.7884. These results mean that the 
enhanced image in Fig. 5(d) will be selected as the output 
image, because it has a smaller unsuitable area, especially on 
the right hand side. 
 

    
(a)                                              (b) 

    
(c)                                          (d) 

Fig. 4 Binary images showing the regions that are too dark or 
bright using the Otsu threshold.  
(a) Image from files Image015.png. (b) Image from files 
Im0307.ppm. (c) Binary image representing the dark regions 
of image (a). (d) Binary image representing the bright regions 
of image (b).  

B. Color balance and contrast enhancement (CBCE) 
Our CBCE algorithm adjusts the brightness, contrast, and 

color balance of color retinal images. It was developed from 
the HS-GEV using ACSQM and a brightness regulator to tune 
the GEV parameters. The algorithm, shown in outline in Fig. 
2, can be described in three steps. To help with the 
description, we will refer to the processing of the color retinal 
image in Fig. 5(a), which was cropped to the region of interest 
in the macular area.  

The first step sets RGB color space variables by following 
the color retinal image specifications of Hubbard et al. [3]. 
The parameters consist of brightness, contrast, and color 

balance. The brightness values for the color bands, b = {R, G, 
B} are bvb = {192, 96, 32}. The lower bound, lbb, and upper 
bound, ubb, for each color band, b, are [lbb=R, ubb=R] = [112, 
240], [lbb=G, ubb=G] = [16, 144] and [lbb=B, ubb=B] = [16, 48]. 
These parameters are employed to tune the transfer functions 
of each color channel, which adjust the color balance and 
image contrast. 

 
The second step estimates the GEV parameters for each 

color channel. The cropped input image is resampled by 
reducing its size to 64×64 pixels by the nearest neighborhood 
method [19]. The down-sampled data is used to estimate three 
parameters: shape, location, and scale ( ˆbκ , ˆbμ , and ˆbσ ) for 
each color band, b, by using PWMs. From the red channel in 
Fig. 5(a), the three parameters are ˆb Rκ = =0.41, ˆb Rσ =  =22.73, 
and ˆb Rμ =  = 197.14. The first moment, b0 = 203.47, of (11) 
represents the mean value, which deviates from the specified 
brightness of the red channel, bvb=R, which is 192. 

To adjust the color balance of each color channel, the new 
location parameters, ˆbμ ′  are calculated by replacing the first 
moment, b0, in (10) with the specified brightness value, bvb, as 
given by: 

 

( )ˆ ˆˆ 1 1 .
ˆ
b

b b b
b

bv σ
μ κ

κ
′ ⎡ ⎤= − − Γ +⎣ ⎦  (20) 

 
In the case of Fig. 5(a), bvb, ˆbσ , and ˆbκ in (20) are replaced 
with bvb=R =192, ˆb Rσ = =22.73, and ˆb Rκ = =0.41. The new 
location parameter of the red band, ˆb Rμ =′ =185.67, provides a 
new intensity range, 0 < x ≤ 241.72.  

Next, the scale parameter of each color channel is used to 
redistribute the intensity values, x, to the new ranges. In our 
study, the input data scale parameters correspond 
approximately to the shape parameters, which are classified 
into four cases.  
Case 1: ˆ0.2 0.2bκ− ≤ ≤ . In this case, the image data 
distribution approaches a Type I GEV function in  (4). The 
probability of the intensity values, x, covers most of the data 
range [24], ( 2 7 ) 0.99b b b bp xμ σ μ σ− ≤ ≤ + = . In the model 
of Hubbard et al. [3], 256 intensity levels were divided into 16 
scales, and the brightness values of the red channel were  
distributed in the ranges [7/16, 15/16], [1/16, 9/16] for the 
green channel, and [1/16, 3/16] for the blue channel. The 
intensity values, such as those for the red and green channels, 
can be redistributed within their specified boundary limits. 
Therefore, the scale parameters for each color channel can be 
approximated from the probability confidence interval; for 
instance, those for the red and green channels are given by: 
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                                               (a)                                                                                 (b) 

        
                                  (c)                                           (d)                                                          (e) 
Fig. 5 Color retinal image enhancement. 
(a) Input fundus image (file: Image109.png), (b) Tone mapping curves of R, G, B, and L (solid lines), (c) The output 
image with qe = 0.8248 and PD = 0.0995, (d) The highest Q for the output image with qe = 0.8193 and PD = 0.0309, (e) 
Histogram of the R, G, and B channels.    

 
ˆ ˆ ˆ ˆ( 7 ) ( 2 ) 128b b b bμ σ μ σ′ ′ ′ ′+ − − = , (21) 

 
which gives ˆ 14.22bσ ′ ≈ .  

The scale parameters in cases 2 and 3 can be determined by 
the range of the random variable, x, in (5). Hosking [25] 
recommended equating x to μ +σ/κ :  
 

ˆˆ ˆ( ) /b b bx μ σ κ′ ′= + . (22) 
 
     To obtain a good point estimation, the shape parameters 
should be within the range -½ < κ̂  < ½ [24]. Thus, cases 2 
and 3 can be formulated as follows: 

Case 2: ˆ0.5 0.2bκ− < < − . This is a Type III GEV 
distribution. From  (4) and (22), the scale parameters can be 
estimated from the lower bound of the brightness values, lbb of 
each color channel.  
 

ˆˆ ˆ.b b b blbσ κ μ′ ′= − . (23) 
 

Case 3: ˆ0.2 0.5bκ< < . The scale parameters in this case 
are GEV type II. From  (4) and (22), they can be approximated 
from the upper bound of the brightness values, ubb, of each 
color channel.  
 

ˆˆ ˆ.b b b bubσ κ μ′ ′= − . (24) 
 

Case 4: ˆ 0.5bκ ≤ − or ˆ 0.5bκ ≥ . This case usually occurs 
when the intensity of the red channel of the retinal image lies 
above the saturation point. The scale parameters can be 
obtained from PWM estimation in the first step without 
alteration. 

During the tuning process, the scale parameters of the four 
cases are estimated by searching the optimal scale values to 
redistribute the intensity values within the tolerance interval       
[ ˆ ˆ5,  10b bσ σ′ ′− + ] . From the tolerance interval, a linear scale 
is used to determine 32 candidates for the scale parameters 
from the combination of the red and green bands. They are 
{ } { }( )ˆ ˆ ˆ ˆ ˆ5, 4,..., 9, 10j

b R b R b R b R b Rσ σ σ σ σ= = = = =′ ′ ′ ′ ′= − − + +  for the red, and 

{ } { }( )ˆ ˆ ˆ ˆ ˆ5, 4,..., 9, 10k
b G b G b G b G b Gσ σ σ σ σ= = = = =′ ′ ′ ′ ′= − − + + for the green 

channels, where index j and k = 1, 2, 3 … 16. All the 
candidate scales in the two sets will be employed to enhance 
the image in the next step. 

In the third step, the optimal GEV parameters in the red 
and green channels are determined by iterative probes with the 
candidate scales which redistribute the brightness values in the 
specified dynamic ranges. In our algorithm, the blue channel is 
translated only to the specified brightness, because the 
intensity in this channel does not contain much information 
related to the retina, and is usually distributed in a narrow 
interval.  

An exhaustive search of combinations of candidate scales 
in { }( )ˆ j

b Rσ =′  and { }( )ˆ k
b Gσ =′  is employed to find the optimal GEV 

parameters. The outer loop operates over the red channel, and 
the inner loop over the green channel. These loops are indexed 
by two parameters, j and k, where j is used to iterate the jth 
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scale in { }( )ˆ j
b Rσ =′ , and index k is used to iterate the kth scale in  

{ }( )ˆ k
b Gσ =′ . For each iteration of the loop, the candidate scales 

perturbs the location parameters in (20), and then the transfer 
function in (7) redistributes the grey levels. Then, the ACSQM 
evaluates the quality index of the enhanced image, and the 
optimal GEV parameters are chosen from the maximum 
quality index, q.  

The output image, g, in Fig. 5(d) was obtained with the 
adjusted mean values of the R, G, and B channels, 
bvb={192.46, 96.86, 32.18}. The original and the optimal 
GEV parameters are shown in Table I. The optimal transfer 
functions for the color channels are shown in Fig. 5(b), which 
also includes the luminance (L) with its CDF from the original 
image (the solid line). The output image histograms of each 
color channel are shown in Fig. 5(e). 

 
TABLE I: GEV parameters of the retinal image in Fig. 5.  

Parameters Original image  
(R,G,B) 

Enhanced image  
(R,G,B) 

Shape (0.41, 0.27, -0.01) (0.40, 0.26, -0.01) 
Scale  (22.73, 14.14, 4.10) (23.01, 19.19, 4.10) 

Location (197.14, 65.53, 3.75) (186.20, 89.68, 29.75)

IV.    RESULTS AND DISCUSSION 
The retinal image data sets were used to evaluate and 

compare our method with other methods that enhance color 
retinal images, such as HS-GEV [7], normalized convolution 
and noise removal (NCNR) [5], and color retinal image 
enhancement based on luminosity and contrast adjustment 
(LCA) [6].  

We consider that the output images have improved quality 
if they provide good image detail, good contrast, and color 
balance, which enables them to be of increased usefulness to 
ophthalmologists. However, color image assessment is not 
easy to evaluate using only quantitative measurements. To 
determine if an image has good quality requires both 
quantitative and visual assessment. The quantitative methods 
used for objective assessment are quaternion structural 
similarity (QSSIM) [34], measured colorfulness (M(3)) [35], 
lightness order error (LOE) [36], and the global contrast factor 
(GCF) [37], which can be categorized into two groups.  

The first quantitative assessment group consists of QSSIM 
and M(3) assess color quality. QSSIM measures luminance, 
chrominance, or the combined degradation between a 
reference and enhanced image [34]. In our case, there is no 
reference retinal image, so the input image was employed. 
This is less ideal for image quality assessment, but it allows us 
to judge how well the enhancement method preserves the 
structure of the achromatic and chromatic information. As a 
consequence, the highest QSSIM score of 1 means that the 
enhancement method completely preserved the structural 
image. 

Unlike QSSIM, M(3) is able to evaluate colorfulness 
without a reference image, and utilizes the opponent color 
space, which works well with color retinal images. Moreover, 
M(3) has the highest correlation with the psychophysical 
experiments of Hasler and Susstrunk [35]. Their seven scores, 
{0, 15, 33, 45, 59, 82, 109}, correspond to {not colorful, 
slightly colorful, moderately colorful, averagely colorful, quite 
colorful, highly colorful, extremely colorful}. 
 

 

       
(a)  

       
(b)  

       
(c) 

 

Fig. 6:  Enhancement result comparisons. 
(a), (b), (c) Image007.png, Image101.png, and Image109.png from DiaretDB0. 

Original NCNR LCA HS-GEV CBCE 

Original NCNR LCA HS-GEV CBCE 

Original NCNR LCA HS-GEV CBCE 
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The second quantitative method group uses LOE to assess 
lightness order, and GCF for edge contrast. LOE can measure 
naturalness preservation based on the relative lightness order 
difference between the original and enhanced images [36]. A 
smaller LOE value means that the retinal enhancement better 
preserves the lightness order. GCF employs image contrasts at 
various resolution levels to measure the richness of detail in 
the green channel [37]. It also does not require a reference 
image. 

Visual assessments are shown in Fig. 6 and 7, with the 
images coming from DiaretDB0 and STARE. The original 
images in the first column exhibit a range of image qualities 

based on their degree of illumination, contrast, and color 
balance. The last 4 columns show the enhanced images using 
the NCNR, LCA, HS-GEV, and CBCE methods, respectively. 

The color balance for the images was modelled by 
Hubbard et al. [3] who specified it with the R, G, and B 
brightness set to 192, 96, and 32, which resulted in color ratios 
of G/R = 0.5 and B/R = 0.17. As seen from the enhanced 
results in Fig. 6 and 7, and the experimental results in the third 
and the fourth column of Table II, our method and HS-GEV 
improved the Hubbard’s color-ratios better than NCNR, and 
LCA.  

 
   

       
(a)  

       
(b)  

 

       
(c) 

Fig. 7:  Enhancement result comparisons. 
(a), (b), (c), Im0013.ppm, Im0082.ppm, and Im0039.ppm from STARE. 

 
   

           
           (a)                           (b)                         (c)                          (d)                         (e)             
Fig. 8: Comparison of improvements in the color cast of the retinal enhancement algorithms 
applied to Im0292.ppm. 
(a) Original image, (b) Output using NCNR, (c) Output using LCA, (d) Output using HS-GEV, 
(e) Output using our method, CBCE. 

 
Fig. 8 shows the dark areas generated by each method. Our 

method improved the quality of the dark regions, while HS-
GEV, NCNR, and LCA enhanced the image around the 
macular area but the corner areas remained dim. This indicates 
that our method improved the non-uniform illumination and 
reduced the regions that were too dark.  

Our method provides colorfulness scores in the range of 70 
to 80, which are lower than NCNR, as seen from the M(3) 
values in Table II. Nevertheless, in the case of images with 
uneven luminance, as in Fig. 9, our method and HS-GEV 
produce significantly better colorfulness. 

 
 

Original NCNR LCA HS-GEV CBCE 

Original NCNR LCA HS-GEV CBCE 

Original NCNR LCA HS-GEV CBCE 

Original NCNR LCA HS-GEV CBCE 
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   (a) M(3)=46.20       (b) M(3)= 55.75      (c) M(3)= 44.03       (d) M(3)=68.98        (e) M(3)=72.29 

 
Fig. 9: Colorfulness comparison of algorithms applied to Image039.png. 
(a) Original image, (b) Output using NCNR, (c) Output using LCA, (d) Output using HS-GEV, 
(e) Output using our method, CBCE. 

 
.  

      

   
                                             (a) LOE=381.23                                                                   (b) LOE=735.92 

    
                             
                                             (c) LOE=13.86                                                                     (d) LOE=7.98 
Fig. 10: Output image and graph showing the lightness in each pixel between Image032.png and the output 
image.  
 (a) Output using NCNR, (b) Output using LCA, (c) Output using HS-GEV, (d) Output using our method, CBCE. 

 
Fig. 10 shows the relative lightness order, which is utilized 

to quantitatively evaluate naturalness preservation. The data 
on the x-axis and y-axis represent the pixel number in the 
image and the maximum intensity values of the three color 
channels, respectively. The graphs in Fig. 10 plot every pixel 
of the image. The black line represents the input image 
lightness, whereas the green line represents the output image 
lightness. Our algorithm preserves the relative lightness order, 
outperforming NCNR, LCA, and HS-GEV. The LOE measure 
[36] judges the similarity in lightness relative order between 
the input and output image, with a smaller LOE value meaning 
they are more similar. Fig. 10 shows that the NCNR and LCA 
black lines are quite different from the green line, and so have 
a bigger LOE. 

Table II summarizes the objective comparison results of 
our method with other image enhancement methods for 
STARE and DiaretDB0. The comparison results were 
calculated with 83 STARE images and 130 DiaretDB0 
images. The last 6 columns give the mean and standard 
deviation of the color ratios, M(3), GCF, QSSIM, and LOE in 
each quantitative method. 

Our method has as good a color balance as HS-GEV, 
achieving optimum green to red color balance ratios while HS-
GEV is better for blue-to-red ratios. Although HS-GEV is 
better for blue-to-red ratios, this is less important since the 
information included in the green channel is richer than for 
blue. The average green-to-red and blue-to-red color balance 

ratios (Mean ± SD) of our method are 0.505±0.002 and 
0.166±0.002, and HS-GEV’s ratios are 0.516±0.093 and 
0.171±0.030, which is close to the color balance specification 
from the Hubbard model.  

HS-GEV yields the highest QSSIM scores, averaging 
0.91±0.09, while our method is in second place, which 
indicates that both methods can preserve structural similarity 
from the input images. Although our method cannot preserve 
structural similarity as well as HS-GEV, the visual assessment 
in Fig. 6 and 7 show that our method provides better visibility 
of the retinal anatomical structures than HS-GEV. 

NCNR gives the highest M(3) scores, averaging 
74.53±17.01. Our method employs GEV’s scale parameters to 
spread the dynamic range between the boundary limits 
specified by Hubbard’s model. This means that our method 
provides a colorfulness scores in the range 70 to 80, as seen 
from the M(3) values in Table II. However, for uneven 
luminance images, our method has the highest colorfulness 
scores compared to the other methods, as shown in Fig. 9. 

NCNR gives the highest GCF score, 5.13±1.12. Within the 
boundary limits, HS-GEV and our method gives lower GCF 
values compared to NCNR. Although our method cannot 
perform image contrast as well as NCNR, the visual 
assessment in Fig. 6 and 7 show that NCNR could generate 
dark blood vessels or dark regions, while our method gives 
more visually pleasing results. Furthermore, our method 
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confirms the GCF assumption because it provides GCF values 
higher than HS-GEV for most of the input images.  

As seen from the experimental results in Table II, there 
exists a trade-off between QSSIM, GCF, and M(3) indexes The 
more contrast and colorfulness value, the fewer structural 
similarity value. In contrast, the more structural similarity 
value, the fewer contrast and colorfulness value. Although our 
method could not reaches the highest in QSSIM, GCF, and 
M(3) value but the visual assessment in Fig. 6 and 7  show that 
our method could deal with this trade-off problem and give a 

more visually pleasing results when compared to other 
methods. 

Our method gives the lowest quantitative measure for LOE 
(18.17±14.82), which confirms the naturalness preservation. 
This indicates that our method performs better than other 
methods in preserving the relative lightness order.  

In summary, compared with other approaches, our method 
not only enhances the contrast of anatomical details, but also 
maintains the structural similarity and the naturalness of the 
retinal images.  

  
 
TABLE II: Performance of various methods on the DIARETDB0 and STARE datasets  

 

V.    CONCLUSIONS AND FUTURE WORK 

Our color retinal image enhancement method (CBCE), 
based on the histogram specification, was presented in this 
paper. The brightness, contrast, and color balance of retinal 
images were automatically improved by using HS transfer 
functions based on a GEV distribution. The GEV parameters 
were designed with Hubbard’s model to specify the color 
retinal images in order to improve the image quality. The 
transfer function was tuned by a psychometric index based on 
an edge-based contrast measurement and a contrast sensitivity 
function. To compensate for non-uniform illumination of the 
retinal images, the index value was modified with too dark and 
too bright regions named as ACSQM. Our CBCE method was 
tested on retinal images from the STARE and DIARETDB0 
databases. The proposed method achieves our contributions 
for improving the image quality as seen from Figs. 6 and 7 
that obtain good color balance and better color contrast than 
other approaches. Additionally, work can be done such as 
improving color contrast by increasing colorfulness to reveal 
hidden information in the fundus photographs and large scale 
clinical testing to declare the enhanced results as sub-standard 
for screening the image quality.  

 

 

 

 

  
REFERENCES 

 
[1]  S. L. Fine, J. W. Berger, M. G. Maguire and A. C. Ho, 

"Agerelated macular degeneration," New Engl J Med, vol. 342, 
no. 7, p. 483492, 2000.  

[2]  L. P. Aiello, T. W. Gardner, G. L. King, G. Blankenship, J. D. 
Cavallerano, F. L. 3. Ferris and R. Klein, "Diabetic 
retinopathy," Diabetes Care, vol. 21, no. 1, pp. 143-156, 1998. 

[3]  L. D. Hubbard, R. P. Danis, M. W. Neider, H. D. Thayer, H. D. 
Wabers, J. K. White, A. J. pugliese and m. F. Pugliese, 
"Brightness, contrast, and color balance of digital versus film 
retinal Images in the age-related eye disease study 2," Journal 
of Investigative Ophthalmology & Visual Science, vol. 49, no. 
8, pp. 3269-3282, 2008.  

[4]  L. D. Hubbard, "Digital color fundus image quality: the impact 
of tonal resolution," Spring/2009 Vol 31:1 p.15. [Online]. 
Available: http://www.opsweb.org/?page=crareference. 
[Accessed 16 June 2015]. 

[5]  D. Peishan, S. Hanwei, Z. Jianmei, L. Ling, W. Jing and F. 
Min, "Retinal fundus image enhancement using the normalized 
convolution and noise removing," International Journal of 
Biomedical Imaging, pp. 1-13, 2016.  

[6]  Z. Mei, J. Kai, W. Shaoze, Y. Juan and Q. Dahong, "Color 
retinal image enhancement based on luminosity and contrast 
adjustment," IEEE Rev. Biomed. Eng., no. 99, pp. 1-7, 2017.  

[7]  S. Intajag, S. Kansomkeat and P. bhurayanontachai, 
"Histogram specification with generalized extreme value 
distribution to enhance retinal images," IET Electronics 
Letters, vol. 52, no. 8, pp. 596-598, April 2016.  

[8]  E. S. L. Gastal and M. M. Oliveira, "Domain transform for 
edge-aware image and video processing," ACM Trans. on 
Graphics, vol. 30, no. 4, p. 1244–1259, 2011.  

Method Dataset G/R B/R   M(3) GCF QSSIM LOE 

NCNR 
DIARETDB0 0.390±0.055 0.097±0.047 70.77±13.80 4.78±0.80 0.59±0.05 366.14±101.23 

STARE 0.591±0.176 0.265±0.219 89.38±20.29 3.97±1.25 0.72±0.06 266.74±98.30 
Both 0.431±0.123 0.131±0.123 74.53±17.01 4.62±0.96 0.61±0.07 346.01±108.04 

LCA 
DIARETDB0 0.389±0.057 0.072±0.047 58.02±13.60 2.38±0.49 0.82±0.04 663.36±188.01 

STARE 0.343±0.262 0.120±0.314 94.52±20.30 3.76±1.11 0.78±0.06 585.55±287.67 
Both 0.380±0.129 0.082±0.147 65.41±21.10 2.66±0.86 0.81±0.05 647.60±213.23 

HS-GEV 
DIARETDB0 0.519±0.104 0.172±0.034 63.33±7.39 0.78±0.47 0.91±0.10 21.85±45.62 

STARE 0.502±0.003 0.168±0.003 77.31±10.92 2.46±0.45 0.93±0.03 35.54±33.14 
Both 0.516±0.093 0.171±0.030 66.16±9.94 1.12±0.82 0.91±0.09 24.62±43.64 

CBCE 
(Our method) 

DIARETDB0 0.506±0.002 0.166±0.002 72.05±3.54 2.66±0.51 0.85±0.10 15.41±5.44 
STARE 0.503±0.003 0.168±0.002 79.32±11.12 2.78±0.80 0.96±0.02 29.03±28.98 

Both 0.505±0.002 0.166±0.002 73.52±6.56 2.69±0.58 0.87±0.10 18.17±14.82 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 13, 2019 

ISSN: 1998-4510 56



 

 

[9]  J. Rajan, K. Kannan and M. R. Kaimal, "An improved hybrid 
model for molecular image denoising," J. of Math. Imaging 
and Vision, vol. 31, no. 1, p. 73–79, 2008.  

[10]  A. B. Hamza, P. L. Luque-Escamilla, J. Martınez-Aroza and R. 
Roman-Roldan, "Removing noise and preserving details with 
relaxed median filters," J. of Math. Imaging and Vision, vol. 
11, no. 2, p. 161–177, 1999.  

[11]  C. Wang and Z. Ye, "Brightness preserving histogram 
equalization with maximum entropy: a variational 
perspective," IEEE Trans. Consum. Electron., vol. 51, no. 4, p. 
1326–1334, 2005.  
 

[12]  H. Ibrahim and N. Kong, "Brightness preserving dynamic 
histogram equalization for image contrast enhancement," IEEE 
Trans. Consum. Electron., vol. 53, p. 1752–1758, 2007.  

[13]  D. Sheet, H. Garud, A. Suveer, M. Mahadevappa and J. 
Chatterjee, "Brightness preserving dynamic fuzzy histogram 
equalization," IEEE Trans. Consum. Electron, vol. 56, no. 4, 
pp. 2475-2480, 2010.  

[14]  T. Jintasuttisak and S. Intajag, "Color retinal image 
enhancement by raleigh contrast limited adaptive histogram 
equaliztion," Proc. Int. Conf. ICCAS, pp. 692-687, 2014.  

[15]  K. Zuiderveld, Contrast limited adaptive histogram 
equalization, San Diego: Academic press professional, pp.474-
485, 1994.  

[16]  G. J. P. Barten, Contrast sensitivity of the human eye and its 
effects on image quality, Washington, DC: SPILE, 1999.  

[17]  A. Hoover, V. Kouznetsova and M. Goldbaum, "Locationg 
blood vessels in retinal images by piecewise threshold probing 
of a matched filter response," IEEE Trans. Med. Imag, vol. 19, 
no. 3, pp. 203-210, 2000.  

[18]  T. Kauppi, V. Kalesnykiene, J. K. Kammarainen, L. Lensu, L. 
Sorri, H. Uusitalo and H. Kalviainen, "DIARETDB0 : 
Evaluation database and methodology for diabetic retinopathy 
algorithms," in Technical report, Lappeenranta, finland, 2006. 

[19]  C. R. Gonzalez and E. R. Woods, Digital image processing, 
3rd edn., Pearson, 2009.  

[20]  D. Coltuc, P. Bolon and J. M. Chassery, "Exact histogram 
specification," IEEE Trans. Image Process., vol. 15, no. 5, pp. 
1143-1152, 2006.  

[21]  W. K. Pratt, Digital image processing, 4th edn., New York, 
United States: John wiley & Sons Inc, 2007.  

[22]  R. A. Fisher and L. H. C. Tippett, "Limiting forms of the 
frequency distribution of the largest or smallest member of a 
sample," Proc. of Cambridge Philosophical Society, vol. 24, 
pp. 180-290, 1928.  

[23]  T. Fararo and R. Katz, "Extremes and design values in 
climatology," World meteorological organization , pp. WCAP-
14, WMO/TD-No. 386., 1990.  
 
 
 
 
 
 
 
 
 
 
 

[24] S. Kotz and S. Nadarajah, Extreme values distributions: theory 
and applications, Covent Garden, London: Imperial College 
Press, 2000.  

[25] J. M. Hosking, J. R. Wallis and E. F. Wood, "Estimation of the 
generalized extreme-value distribution by the method of 
probability weighted moments," Technometreics, vol. 27, no. 
3, pp. 251-161, 1985.  

[26] E. Castillo, S. A. Hadi, N. Balakrisnan and M. J. Sarabia, 
Extreme value and related models with applications in 
engineering and science, New York: John Wiley & Sons, 2004. 

[27] K. A. Jain, Fundamentals of digital image processing, 
Englewood Cliffs NJ: Pentice-Hall, Inc, 1989.  

[28] S. Kullback and R. A. Leibler, "On information and 
sufficiency," Ann. Math. Stat., vol. 22, no. 1, p. 79–86, 1951.  

[29] S. Wang, K. Jin, H. Lu, C. Cheng, J. Ye and D. Qian, "Human 
visual system-based fundus image quality assessment of 
portable fundus Camera photographs," IEEE Trans. Med. 
Imag., vol. 35, no. 4, pp. 1046-1055, 2016.  

[30] G. Ginesu, F. Massidda and D. D. Giusto, "A multi-factors 
approach for image quality assessment based on a human 
visual system model," Signal Process, Image Commumn, vol. 
21, no. 4, pp. 316-333, 2006.  
 

[31] Y. Han and y. Cai, "Contrast sensitivity function calibration 
based on image quality prediction," Opt. Eng., vol. 53, no. 11, 
p. 113107, 2014.  

[32] J. L. Mannos and D. J. Sakrison, "The effects of a visual 
fidelity criterion on the encoding of images," IEEE Trans. Inf. 
Theory, vol. 20, no. 4, pp. 525-536, 1974.  

[33] N. Otsu, "A threshold selection method from gray-level 
histogram," IEEE Trans. Syst. Man, Cybern, Vols. SMC-9, no. 
1, pp. 62-66, 1979.  

[34] A. Kolaman and O. Pecht, "Quaternion structural similarity a 
new quality index for color images," IEEE Trans. Image 
Process., vol. 21, no. 4, p. 1526 – 1536, 2012.  

[35] D. Hasler and S. Susstrunk, "Measuring colorfulness in natural 
images," Proc. SPIE, vol. 5007, pp. 87-95, 2003.  

[36] S. Wang, J. Zheng, H. Hu and B. Li, "Naturalness preserved 
enhancement algorithm for non-uniform illumination images," 
Trans. Image Process., vol. 22, no. 9, pp. 60-70, 2013.  

[37] K. Matkovic, L. Neumann, A. Neumann, T. Psik and W. 
Purgathofer, "Global Contrast Factor - a New Approach to 
Image Contrast," in Computational Aesthetics in Graphics, 
Visualization and Imaging, Girona, Spain, May, 2005, 159-
167.  

 
 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 13, 2019 

ISSN: 1998-4510 57




